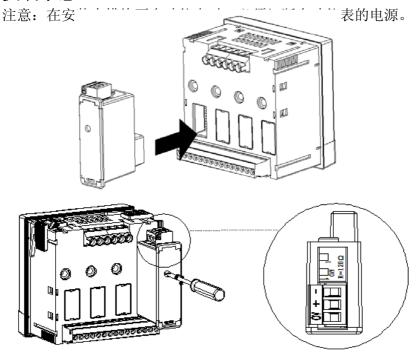
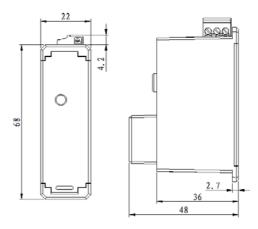


MPDP1A 通信模块使用说明书 版本: V0.5


上海康比利仪表有限公司 SHANGHAI COMPLEE INSTRUMENT CO., LTD.

一.介绍


该模块必须安装在本公司的多功能数字仪表上,通过此通信模块,可将多功能数字仪表与 PC 以 profibus-DP 的协议进行远程通讯,可对模块内的测量值进行读取。

- 1)符合 JB/T 10308.3-2001:测量和控制数字数据通信工业控制系统用现场总线第3部分-PROFIBUS规范;
- 2) 支持 DPV0、DPV1 协议,实现周期性数据、报警数据、非周期数据的通信;
- 3) 标准 Profibus-DP 接口,通信速率 9.6 Kbps \sim 12 Mbps,波特率自适应;
- 4) Profibus-DP 地址范围: 1-125, 用户可通过多功能表面板设置,设置方法请参考多功能表主机使用说明。
- 5) GSD 下载地址: www.complee.com -> 下载中心->软件下载->profibus-DP通讯模块GSD文件。

二.安装示意

三、尺寸图

单位: mm

四、通信数据定义

可采用 Profibus-DP 主站、Profibus-DP 主站卡与多功能表进行通信,用户在主站配置软件中添加本多功能表的 GSD 文件,配置好网络建立通信后,主站可通过周期性访问读取多功能表的实时数据,共70 个字 (word) 数据;其中采集数据值的倍率指数指示寄存器中,指数是以 10 为底的指数,0= 常规单位,3=K(千),6=M(兆),例如电流测量值为 6000A,6000= 6×103,则多功能仪表显示为 6.000KA,倍率指数的对应寄存器的值为 3。

通信数据定义如下表所示:

表 1. 周期性数据定义表

序号	数据偏移量	数据内容描述	单位
1	0x00	当前频率	0.01Hz
2	0x01	A 相的相电压	0.1V
3	0x02	B相的相电压	0.1V
4	0x03	C 相的相电压	0.1V
5	0x04	相电压的平均值	0.1V
6	0x05	A、B 间的线电压	0.1V
7	0x06	B、C 间的线电压	0.1V
8	0x07	C、A 间的线电压	0.1V
9	0x08	线电压的平均值	0.1V

序号	数据偏移量	数据内容描述	单位
10	0x09	A 相电流	0. 1A
11	0x0A	B相电流	0. 1A
12	0x0B	C相电流	0. 1A
13	0x0C	保留…	
14	0x0D	线电流的平均值	0. 1A
15	0x0E	A 相有功功率	0.1W
16	0x0F	B 相有功功率	0.1W
17	0x10	C 相有功功率	0.1W
18	0x11	有功功率总和	0.1W
19	0x12	A 相无功功率	0. 1var
20	0x13	B 相无功功率	0. 1var
21	0x14	C相无功功率	0. 1var
22	0x15	无功功率总和	0. 1var
23	0x16	A 相视在功率	0. 1VA
24	0x17	B 相视在功率	0. 1VA
25	0x18	C相视在功率	0. 1VA
26	0x19	视在功率总和	0. 1VA
27	0x1A	A 相功率因数	0. 001PF
28	0x1B	B相功率因数	0.001PF
29	0x1C	C相功率因数	0.001PF
30	0x1D	功率因数平均值	0.001PF
31	0x1E	电压的不平均系数	0.01%
32	0x1F	电流的不平均系数	0.01%
33	0x20	正有功电度 >10000	1kWh
34	0x21	正有功电度〈10000	1kWh
35	0x22	正无功电度 >10000	1kvarh
36	0x23	正无功电度〈10000	1kvarh
37	0x24	正视在电度 >10000	1kVAh
38	0x25	正视在电度〈10000	1kVAh
39	0x26	负有功电度 >10000	1kWh
40	0x27	负有功电度〈10000	1kWh
41	0x28	负无功电度 >10000	1kvarh
42	0x29	负无功电度〈10000	1kvarh

序号	数据偏移量	数据内容描述	单位
43	0x2A	负视在电度 >10000	1kVAh
44	0x2B	负视在电度〈10000	1kVAh
45	0x2C	当前频率的指数值	
46	0x2D	A 相的相电压的指数值	
47	0x2E	B相的相电压的指数值	
48	0x2F	C相的相电压的指数值	
49	0x30	相电压的平均值的指数值	
50	0x31	A、B间的线电压的指数值	
51	0x32	B、C间的线电压的指数值	
52	0x33	C、A 间的线电压的指数值	
53	0x34	线电压的平均值的指数值	
54	0x35	A 相电流的指数值	
55	0x36	B相电流的指数值	
56	0x37	C相电流的指数值	
57	0x38	保留…	
58	0x39	线电流的平均值的指数值	
59	0x3A	A 相有功功率的指数值	
60	0x3B	B相有功功率的指数值	
61	0x3C	C相有功功率的指数值	
62	0x3D	有功功率总和的指数值	
63	0x3E	A 相无功功率的指数值	
64	0x3F	B相无功功率的指数值	
65	0x40	C相无功功率的指数值	
66	0x41	无功功率总和的指数值	
67	0x42	A 相视在功率的指数值	
68	0x43	B相视在功率的指数值	
69	0x44	C相视在功率的指数值	
70	0x45	视在功率总和的指数值	

表 2. 周期性数据定义表

说明: 当多功能表的电压总谐波率、电流总谐波率超过 45% 时, 多功能表将产生报警信息,用户可通过报警数据获得相关报警内容。

序号	数据偏移量	数据内容描述	单位
1	0x00	电压总谐波率	0.01%
2	0x01	电流总谐波率	0.01%

表 3. 非周期性数据定义表 (Slot=1, Index=0, length=56 word) 说明: 当用户需读取非周期性数据时,可通过下表中设定的 Slot, Index 值获取相应数据。

510t,Index 由外外们还数据。				
序号	数据偏移量	数据内容描述	单位	
1	0x00	电压总的谐波率	0.01%	
2	0x01	电流总的谐波率	0.01%	
3	0x02	频率的最大值	0.01Hz	
4	0x03	A 相电流的最大值	0. 1A	
5	0x04	B 相电流的最大值	0.1A	
6	0x05	C 相电流的最大值	0.1A	
7	0x06	保留…		
8	0x07	A 相电压的最大值	0.1V	
9	0x08	B 相电压的最大值	0.1V	
10	0x09	C 相电压的最大值	0.1V	
11	0x0A	A、B 间线电压的最大值	0.1V	
12	0x0B	B、C 间线电压的最大值	0.1V	
13	0x0C	C、A 间线电压的最大值	0.1V	
14	0x0D	A 相有功功率的最大值	0.1W	
15	0x0E	B 相有功功率的最大值	0.1W	
16	0x0F	C相有功功率的最大值	0.1W	
17	0x10	总有功功率的最大值	0.1W	
18	0x11	A 相无功功率的最大值	0. 1var	
19	0x12	B 相无功功率的最大值	0. 1var	
20	0x13	C相无功功率的最大值	0. 1var	
21	0x14	总无功功率的最大值	0. 1var	
22	0x15	A 相视在功率的最大值	0. 1VA	
23	0x16	B 相视在功率的最大值	0. 1VA	

序号	数据偏移量	数据内容描述	单位
24	0x17	C 相视在功率的最大值	0.1VA
25	0x18	总视在功率的最大值	0. 1VA
26	0x19	A 相功率因数的最大值	0.001PF
27	0x1A	B相功率因数的最大值	0.001PF
28	0x1B	C相功率因数的最大值	0.001PF
29	0x1C	总功率因数的最大值	0.001PF
30	0x1D	频率的平均值	0.01Hz
31	0x1E	A 相电流的平均值	0. 1A
32	0x1F	B相电流的平均值	0. 1A
33	0x20	C 相电流的平均值	0. 1A
34	0x21	保留…	
35	0x22	A 相电压的平均值	0.1V
36	0x23	B相电压的平均值	0.1V
37	0x24	C 相电压的平均值	0.1V
38	0x25	A、B间线电压的平均值	0.1V
39	0x26	B、C 间线电压的平均值	0.1V
40	0x27	C、A 间线电压的平均值	0. 1V
41	0x28	A 相有功功率的平均值	0.1W
42	0x29	B相有功功率的平均值	0.1W
43	0x2A	C相有功功率的平均值	0.1W
44	0x2B	总有功功率的平均值	0.1W
45	0x2C	A 相无功功率的平均值	0. 1var
46	0x2D	B相无功功率的平均值	0. 1var
47	0x2E	C相无功功率的平均值	0. 1var
48	0x2F	总无功功率的平均值	0. 1var
49	0x30	A 相视在功率的平均值	0. 1VA
50	0x31	B相视在功率的平均值	0. 1VA
51	0x32	C相视在功率的平均值	0. 1VA
52	0x33	总视在功率的平均值	0. 1VA
53	0x34	A 相功率因数的平均值	0. 001PF
54	0x35	B相功率因数的平均值	0. 001PF
55	0x36	C相功率因数的平均值	0.001PF
56	0x37	总功率因数的平均值	0.001PF

表 4. 非周期性数据定义表 (Slot=1,Index=1,length=56 word)

		(Siot-1, ilidex-1, leligiii-30 word)
序号	数据偏移量	数据内容描述
1	0x00	电压总的谐波率的指数值
2	0x01	电流总的谐波率的指数值
3	0x02	频率的最大值的指数值
4	0x03	A 相电流的最大值的指数值
5	0x04	B相电流的最大值的指数值
6	0x05	C相电流的最大值的指数值
7	0x06	保留…
8	0x07	A 相电压的最大值的指数值
9	0x08	B相电压的最大值的指数值
10	0x09	C相电压的最大值的指数值
11	0x0A	A、B间线电压的最大值的指数值
12	0x0B	B、C间线电压的最大值的指数值
13	0x0C	C、A 间线电压的最大值的指数值
14	0x0D	A 相有功功率的最大值的指数值
15	0x0E	B相有功功率的最大值的指数值
16	0x0F	C相有功功率的最大值的指数值
17	0x10	总有功功率的最大值的指数值
18	0x11	A 相无功功率的最大值的指数值
19	0x12	B相无功功率的最大值的指数值
20	0x13	C相无功功率的最大值的指数值
21	0x14	总无功功率的最大值的指数值
22	0x15	A 相视在功率的最大值的指数值
23	0x16	B相视在功率的最大值的指数值
24	0x17	C相视在功率的最大值的指数值
25	0x18	总视在功率的最大值的指数值
26	0x19	A 相功率因数的最大值的指数值
27	0x1A	B相功率因数的最大值的指数值
28	0x1B	C相功率因数的最大值的指数值
29	0x1C	总功率因数的最大值的指数值
30	0x1D	频率的平均值的指数值
31	0x1E	A 相电流的平均值的指数值
32	0x1F	B相电流的平均值的指数值

0x1F	B相电流的平均值的指数值
0x20	C相电流的平均值的指数值
0x21	保留…
0x22	A 相电压的平均值的指数值
0x23	B相电压的平均值的指数值
0x24	C相电压的平均值的指数值
0x25	A、B间线电压的平均值的指数值
0x26	B、C间线电压的平均值的指数值
0x27	C、A 间线电压的平均值的指数值
0x28	A 相有功功率的平均值的指数值
0x29	B相有功功率的平均值的指数值
0x2A	C相有功功率的平均值的指数值
0x2B	总有功功率的平均值的指数值
0x2C	A 相无功功率的平均值的指数值
0x2D	B相无功功率的平均值的指数值
0x2E	C相无功功率的平均值的指数值
0x2F	总无功功率的平均值的指数值
0x30	A 相视在功率的平均值的指数值
0x31	B相视在功率的平均值的指数值
0x32	C相视在功率的平均值的指数值
0x33	总视在功率的平均值的指数值
0x34	A 相功率因数的平均值的指数值
0x35	B相功率因数的平均值的指数值
0x36	C相功率因数的平均值的指数值
0x37	总功率因数的平均值的指数值
	0x20 0x21 0x22 0x23 0x24 0x25 0x26 0x27 0x28 0x29 0x2A 0x2B 0x2C 0x2D 0x2E 0x30 0x31 0x32 0x33 0x34 0x35 0x36

表 5. 非周期性数据定义表 (Slot=1,Index=2,length=18 word)

序号	数据偏移量	数据内容描述	单位	
1	0x00	接线方式	0: 4u(三相四线不平衡) 1: 4B(三相四线平衡) 2: 3u(三相三线不平衡) 3: 3B(三相三线平衡) 4: 1B(单相系统)	
2	0x01	频率选择	0: 50Hz 1: 60Hz	

序号	数据偏移量	数据内容描述	单位
3	0x02	电流互感器初级电流值	$0 \sim 65535$
4	0x03	电流互感器初级电流值单位	A 或 kA 0: A 1: kA
5	0x04	电流互感器次级电流值	0: 1A 1: 5A
6	0x05	电压互感器初级电压值	$0 \sim 65535$
7	0x06	电压互感器初级电压值单位	V 或 kV 2: V 3: kV
8	0x07	电压互感器次级电压值	$0 \sim 65535$
9	0x08	日期 - 年	$0 \sim 65535$
10	0x09	日期 - 月	$1 \sim 12$
11	0x0A	日期-日	$1 \sim 31$
12	0x0B	时间 - 小时	0-23
13	0x0C	时间 - 分钟	0-59
14	0x0D	时间 - 秒	0-59
15	0x0E	是否清除最大及平均值	0: NO 1: YES
16	0x0F	是否清除千瓦时的值	0: NO 1: YES
17	0x10	是否清除历史事件记录监控 值,若清除,则事件记录的监 控内容为 0XFF	0: NO 1: YES
18	0x11	最大及平均值的采样时间间隔	0: 20 分钟 1: 30 分钟 2: 60 分钟 3: 2 秒钟 4: 10 秒钟 5: 5 分钟 6: 8 分钟 7: 10 分钟 8: 15 分钟

当用户需要对表 5 的参数进行设置时,可采用非周期写的方式分别对每个参数进行设置,具体 slot、index 定义见表 6。

表 6. 非周期性写数据定义表

序号	Slot 值	Index 值	数据内容描述	单位
1	1	2	接线方式	0: 4u(三相四线不平衡) 1: 4B(三相四线平衡) 2: 3u(三相三线不平衡) 3: 3B(三相三线平衡) 4: 1B(单相系统)
2	1	3	频率选择	0: 50Hz 1: 60Hz
3	1	4	电流互感器初级电 流值	$0 \sim 65535$
4	1	5	电流互感器初级电 流值单位	A 或 kA 0: A 1: kA
5	1	6	电流互感器次级电 流值	0: 1A 1: 5A
6	1	7	电压互感器初级电 压值	$0 \sim 65535$
7	1	8	电压互感器初级电 压值单位	V 或 kV 2: V 3: kV
8	1	9	电压互感器次级电 压值	$0 \sim 65535$
9	1	10	保留	保留
10	1	11	保留	保留
11	1	12	保留	保留
12	1	13	保留	保留
13	1	14	保留	保留
14	1	15	保留	保留
15	1	16	是否清除最大及平 均值	0: NO 1: YES

序号	Slot 值	Index 值	数据内容描述	单位
16	1	17	是否清除千瓦时的 值	0: NO 1: YES
17	1	18		0: NO 1: YES
18	1	19	最大及平均值的采样时间间隔	0: 20 分钟 1: 30 分钟 2: 60 分钟 3: 2 秒钟 4: 10 秒钟 5: 5 分钟 6: 8 分钟 7: 10 分钟 8: 15 分钟

表 7. 事件历史记录寄存器 非周期性数据定义表 (Slot=1,Index=3,length=120 word) 说明:

- 1、对于报警模块而言,每个模块有2路报警输出,每个仪表最多安装4个报警模块,即8路报警输出,每个事件的信息占用12个字节,其中事件发生时的年份是2个字节,报警时的极值为4个字节(float型)数据
- 2、每个事件的信息的第一个字节为监控对象的内容,如该事件有动作,则该字节定义如下表所示,若无动作,则该字节固定为0xFF。

序号	数据偏	数据内容描述		
1,1,2	移量			
1	0x00	第 1 路第 1 个事件的监控对象,若该事件无意义,则固定为 0xFF。 监控定义如下: 0: A 项电流; 1: B 项电流; 2: C 项电流 3: AB 项线电压; 4: BC 项线电压; 5: CA 项线电压 6: A 项电压; 7: B 项电压; 8: C 项电压 9: 有功功率 P1; 10: 有功功率 P2; 11: 有功功率 P3 12: 有功功率总和 Psum; 13: 无功功率 Q1; 14: 无功功率 Q2; 15: 无功功率 Q2; 16: 无功功率 Q2; 15: 无功功率 Q2; 16: 无功功率 S2; 19: 视在功率 S3 20: 视在功率总和 Ssum; 21: 功率因数平均值 PF		
2	0x01	22: 频率值 F 第 1 路第 1 个报警事件的状态 0: 事件复位 1: 事件产生		
3	0x02	第1路第1个事件报警时的时间——分钟		
4	0x03	第1路第1个事件报警时的时间——小时		
5	0x04	第1路第1个事件报警时的日期——日		
6	0x05	第1路第1个事件报警时的日期——月		
7	0x06	第1路第1个事件报警时的日期——年(低字节)		
8	0x07	第1路第1个事件报警时的日期——年(高字节)		
9	0x08	第1路第1个事件报警时的极值(float 型第一个字节)		
10	0x09	第1路第1个事件报警时的极值(float 型第二个字节)		
11	0x0A	第1路第1个事件报警时的极值(float 型第三个字节)		
12	0x0B	第1路第1个事件报警时的极值(float 型第四个字节)		
13	0x0C	第1路第2个事件的监控对象,若该事件无意义,则固定为0xFF。 监控定义如数据偏移量0x00定义		
14	0x0D	第 1 路第 2 个报警事件的状态 0: 事件复位 1: 事件产生		
15	0x0E	第1路第2个事件报警时的时间——分钟		

序号	数据偏 移量	数据内容描述
16	0x0F	第1路第2个事件报警时的时间——小时
17	0x10	第1路第2个事件报警时的日期——日
18	0x11	第1路第2个事件报警时的日期——月
19	0x12	第1路第2个事件报警时的日期——年(低字节)
20	0x13	第1路第2个事件报警时的日期——年(高字节)
21	0x14	第1路第2个事件报警时的极值(float 型第一个字节)
22	0x15	第1路第2个事件报警时的极值(float 型第二个字节)
23	0x16	第1路第2个事件报警时的极值(float 型第三个字节)
24	0x17	第1路第2个事件报警时的极值(float 型第四个字节)
•••••	•••••	省略
117	0x74	第1路第10个事件报警时的极值(float 型第一个字节)
118	0x75	第1路第10个事件报警时的极值(float 型第二个字节)
119	0x76	第1路第10个事件报警时的极值(float 型第三个字节)
120	0x77	第1路第10个事件报警时的极值(float 型第四个字节)

表 8. 非周期性数据定义表 (Slot=1, Index=4, length=120 word)

序号	数据偏 移量	数据内容描述
1	0x00	第1路第11个事件的监控对象,若该事件无意义,则固定为0xFF。 监控定义如数据偏移量0x00定义
2	0x01	第 1 路第 11 个报警事件的状态 0: 事件复位 1: 事件产生
3	0x02	第1路第11个事件报警时的时间——分钟
4	0x03	第1路第11个事件报警时的时间——小时
5	0x04	第1路第11个事件报警时的日期——日
6	0x05	第1路第11个事件报警时的日期——月
7	0x06	第1路第11个事件报警时的日期——年(低字节)
8	0x07	第1路第11个事件报警时的日期——年(高字节)
9	0x08	第1路第11个事件报警时的极值(float 型第一个字节)
10	0x09	第1路第11个事件报警时的极值(float 型第二个字节)

依次类推,当Slot=1,所有Index值对应的报警数据如表9所示。表9.报警模块非周期性数据定义总表

序号	Index 值	数据含义	数据长度(word)
1	index=3	第1路第1个~第10个报警事件	120
2	index=4	第1路第11个~第20个报警事件	120
3	index=5	第1路第21个~第30个报警事件	120
4	index=6	第1路第31个~第40个报警事件	120
5	index=7	第1路第41个~第50个报警事件	120
6	index=8	第2路第1个~第10个报警事件	120
7	index=9	第2路第11个~第20个报警事件	120

序号	Index 值	数据含义	数据长度 (word)
8	index=10	第2路第21个~第30个报警事件	120
9	index=11	第2路第31个~第40个报警事件	120
10	index=12	第2路第41个~第50个报警事件	120
11	index=13	第3路第1个~第10个报警事件	120
12	index=14	第 3 路第 11 个~第 20 个报警事件	120
13	index=15	第 3 路第 21 个~第 30 个报警事件	120
14	index=16	第 3 路第 31 个~第 40 个报警事件	120
15	index=17	第 3 路第 41 个~第 50 个报警事件	120
16	index=18	第4路第1个~第10个报警事件	120
17	index=19	第 4 路第 11 个~第 20 个报警事件	120
18	index=20	第 4 路第 21 个~第 30 个报警事件	120
19	index=21	第 4 路第 31 个~第 40 个报警事件	120
20	index=22	第 4 路第 41 个~第 50 个报警事件	120
21	index=23	第5路第1个~第10个报警事件	120
22	index=24	第 5 路第 11 个~第 20 个报警事件	120
23	index=25	第 5 路第 21 个~第 30 个报警事件	120
24	index=26	第 5 路第 31 个~第 40 个报警事件	120
25	index=27	第 5 路第 41 个~第 50 个报警事件	120
26		第6路第1个~第10个报警事件	120
27		第6路第11个~第20个报警事件	120
28		第 6 路第 21 个~第 30 个报警事件	120
29		第6路第31个~第40个报警事件	120
30		第 6 路第 41 个~第 50 个报警事件	120
31	index=33	第7路第1个~第10个报警事件	120
32		第7路第11个~第20个报警事件	120
33		第7路第21个~第30个报警事件	120
34		第7路第31个~第40个报警事件	120
35		第7路第41个~第50个报警事件	120
36		第8路第1个~第10个报警事件	120
37		第8路第11个~第20个报警事件	120
38		第8路第21个~第30个报警事件	120
39		第8路第31个~第40个报警事件	120
40	index=42	第8路第41个~第50个报警事件	120

每一路报警实践的数量可通过表 10 获得。 表 10. 非周期性读数据定义表 (Slot=1, Index=43, length=8

word)

序号	数据偏移量(word 为单位)	数据内容描述
1	0x00	第1路报警事件的数量
2	0x01	第2路报警事件的数量
3	0x02	第3路报警事件的数量
4	0x03	第4路报警事件的数量
5	0x04	第5路报警事件的数量
6	0x05	第6路报警事件的数量
7	0x06	第7路报警事件的数量
8	0x07	第8路报警事件的数量
8	0x07	第8路报警事件的数量

五.DP 非周期通信举例

以西门子 315-2DP 作为 Profibus-DP 主站,用户在西门子 STEP7 软件中添加本多功能表的 GSD 文件并配置网络后,可实现 315-2DP 与多功能表的 Profibus-DP 周期性实时通信。同时可调用特殊功能块实现非周期读写服务。SFC59 对应读服务,SFC58 对应写服务。可在 STEP7 软件中编程如下:

SFC 59 调用实例如下所示:

CALL "RD_REC"

REQ :=M1.0

IOID :=B#16#54 LADDR :=W#16#0

RECNUM :=B#16#1 // 十六进制

RET_VAL:=MW1
BUSY :=M1.1

RECORD :=P#MB50.0 BYTE 112

SFC 58 调用实例如下所示:

CALL "WR_REC"
REQ :=M1. 2
IOID :=B#16#54
LADDR :=W#16#0

RECNUM :=B#16#2 // 十六进制

RECORD :=P#MB50.0 BYTE 2

RET_VAL:=MW3
BUSY :=M1.3

其中具体含义如下:

1) REQ 是调用请求位, 当此位为1时, 调用执行。

- 2)I0ID为B#16#54或B#16#55。54表示输入模块,55表示输出模块。 当从站输入输出都支持时,看输入、输出模块的起始地址(LADDR) 哪个小,选小的起始地址进行定义,如果相等,则定义为输入。
- 3) LADDR 为模块 I/O 起始地址(这个地址对应于 STEP7 软件进行硬件组态时模块的地址)。主站根据这个地址来判别跟哪个从站要数据。
 - 4) RECNUM 为 S7-300 数据记录号,即 index,数值范围 0-240。
- 5) RECORD 对应需要传输的数据记录。对于 SFC59 读来说,设定从从站模块读上来的数据保存的地址以及数量。对于 SFC58 写来说,设定将要传输给从站模块的数据的地址以及数量,保存或传输方式都以字节为单位。
- 6) RET_VAL 表示调用返回值,根据这个值可以判断调用是否成功执行,如果失败,可以得到失败的原因。
- 7) BUSY 表示调用忙位。当调用执行时,此值为1,调用结束时, 此值为零,因此可以根据这个位的值,判断调用是否结束。

六、型号编写规则

1 2 3 4

型号说明:

- 1、产品识别码: "M"
- 2、 功能代号: 固定为"PDP"
- 3、输出位数: 固定为1路
- 4、 模块后缀: 默认为 A

七、执行标准

• JB/T 10308. 3-2001: 测量和控制数字数据通信工业控制系统用现场总线第3部分-PR0FIBUS规范

- •GB 4793.1-2007 测量、控制和实验用电气设备的安全要求 第一部分 通用要求
 - •GB/T17626 -2008 电磁兼容 试验和测量技术

八、注意事项

- 1. 请按照接线图正确接线。
- 2. 在接线连接前,请务必切断测量物的电源。
- 3. 请勿施加超过最高量程值,这会引起本仪表发生故障。
- 4. 请勿在结露状态下使用。
- 5. 当在裸露、带电部分的周围使用仪器时,请勿碰触到施加电压的部分,此时,推荐使用橡胶手套等保护工具。
- 6. 本说明书相关版本升级, 恕不另行通知

上海康比利仪表有限公司

SHANGHAI COMPLEE INSTRUMENT CO., LTD.

地址:上海市松江科技园区彭丰路 790 号

邮编: 201614

电话: 021-57858333 传真: 021-57858097

网址: http://www.complee.com E-mail:service@complee.com